

SEMAINE DES MATHEMATIQUES 2024

Liberté Égalité Fraternité

Seconde

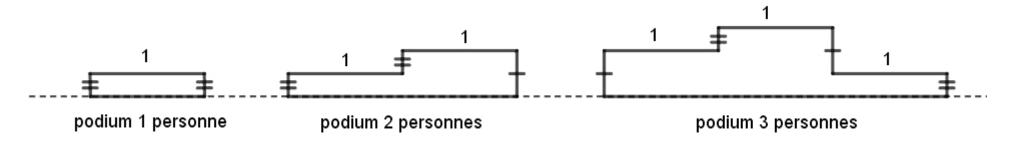
Corrigés

Les podiums

Pour un podium pour 1 personne, le périmètre est $2 \times 1 \times 1 + 2 \times 0,2 \times 1$ mètres.

Pour un podium pour 2 personnes, le périmètre est 2 x 1 x 2 + 2 x 0,2 x 2 mètres.

Pour un podium pour 3 personnes, le périmètre est $2 \times 1 \times 3 + 2 \times 0,2 \times 3$ mètres.



Pour un podium de n personnes, le périmètre est $2 \times 1 \times n + 2 \times 0.2 \times n = 2n + 0.4n = 2.4n$ mètres.

- 1. Pour 8 personnes, le périmètre est de $2,4 \times 8 = 19,2$ mètres.
- 2. Pour 2024 personnes, le périmètre serait de 2,4 x 2024 = 4857,6 mètres!

Des médailles...

<u>France</u>: Soit x le nombre de médailles d'argent et y le nombre de médailles de bronze.

Il y a 20 médailles en tout donc 6 + x + y = 20 donc x + y = 14

Pour les points :

$$6 \times 3 + x \times 2 + y \times 1 = 39$$

$$18 + 2x + y = 39$$

$$2x + y = 21$$

$$y = 21 - 2x$$

La recherche par tableur permet de conclure qu'il y a 7 médailles de bronze et 7 d'argent.

A	x ∑ =	С	D
France	Bronze	Argent	Bronze+Argen
	y=21-2x	х	х+у
	19	1	20
	17	2	19
	15	3	18
	13	4	17
	11	5	16
	9	6	15
	7	7	14
	5	8	13
	3	9	12
	1	10	11
	-1	11	10

<u>Allemagne</u>: Soit z le nombre de médailles d'argent, t le nombre de médailles de bronze et u le nombre de médailles d'or. On obtient le système suivant :

$$\begin{cases} u + z + t = 20 \\ 3u + 2z + t = 36 \end{cases}$$

On peut remarquer que les nombres u, z et t sont nécessairement inférieurs à 20.

En soustrayant la ligne 2 à la ligne 1 du système, on obtient l'équation 2u + z = 16.

On peut en déduire que z est un nombre pair inférieur à 16 et que le nombre u est inférieur à 8.

Par suite, le nombre z appartient à l'ensemble {0 ; 2 ; 4 ; 6 ; 8 ; 10 ; 12 ; 14 ; 16}.

Si z = 0 alors u = 8 et donc t = 12 : cela ne convient pas car 8 > 0.

Si z = 2 alors u = 7 et donc t = 11 : cela ne convient pas 7 > 2.

Si z = 4 alors u = 6 et donc t = 10 : cela ne convient pas 6 > 4.

Si z = 6 alors u = 5 et donc t = 9 : cela convient car 9 > 6 > 5.

Si z = 8 alors u = 4 et donc t = 8 : cela ne convient pas 8 = 8.

Ainsi, l'Allemagne a obtenu 9 médailles de bronze, 6 médailles d'argent, 5 médailles d'or.

Encore des médailles!

<u>Informations déduites de la 1ère affirmation :</u>

Il y a 20 médailles de bronze au total. Un quart a été obtenu par l'Allemagne, soit $20 \times \frac{1}{4} = 5$ médailles de bronze.

Un dixième par la Chine, soit $20 \times \frac{1}{10} = 2$.

La Norvège a donc obtenu 20 - 2 - 5 = 13 médailles de bronze.

Représentons la situation par un tableau à compléter :

	Or	Argent	Bronze	Total
Chine			2	
Allemagne			5	
Norvège			13	
Total			20	

<u>Informations déduites de la 2^{ème} affirmation :</u>

L'Allemagne a obtenu 12 médailles d'or, cela représente $\frac{4}{9}$ du total des médailles allemandes.

Notons x le nombre total de médailles allemandes. On a alors $12 = \frac{4}{9}x$, donc $x = 12 \times \frac{9}{4}$, donc x = 27.

Le nombre de médailles d'argent de l'Allemagne est 27 - 12 - 5 = 10.

	Or	Argent	Bronze	Total
Chine			2	
Allemagne	12	10	5	27
Norvège			13	
Total			20	

Informations déduites de la 3^{ème} affirmation :

La Chine a obtenu 9 médailles d'or, cela représente 60% du total des médailles chinoises.

Notons y le nombre total de médailles chinoises. On a alors 9=0.6y, donc $y=\frac{9}{0.6}$, donc y=15.

Le nombre de médailles d'argent de la Chine est 15 - 9 - 2 = 4.

	Or	Argent	Bronze	Total
Chine	9	4	2	15
Allemagne	12	10	5	27
Norvège			13	
Total			20	

<u>Informations déduites de la 4^{ème} affirmation :</u>

La Norvège a remporté 2 fois plus de médailles d'or que de médailles d'argent. Notons z le nombre de médailles d'argent obtenues par la Norvège.

	Or	Argent	Bronze	Total
Chine	9	4	2	15
Allemagne	12	10	5	27
Norvège	2z	Z	13	
Total			20	

<u>Informations déduites de la 5^{ème} affirmation :</u>

Il y a autant de médailles d'or que de médailles remportées par la Norvège.

Notons a le nombre total de médailles d'or.

	Or	Argent	Bronze	Total
Chine	9	4	2	15
Allemagne	12	10	5	27
Norvège	2z	Z	13	а
Total	а		20	

On déduit du tableau que 9 + 12 + 2z = a et 2z + z + 13 = a.

Ainsi,
$$9 + 12 + 2z = 2z + z + 13$$
.

Donc
$$21 + 2z = 3z + 13$$

$$21 - 13 = 3z - 2z$$

$$8 = z$$

Grâce à cette information, le tableau est entièrement complété :

	Or	Argent	Bronze	Total
Chine	9	4	2	15
Allemagne	12	10	5	27
Norvège	16	8	13	37
Total	37	22	20	79

Conclusion: Au total, ces trois pays ont obtenu 79 médailles.

Transformez l'essai!

Question 1

• Modélisation du problème :

Suivant là où se place le tireur, l'angle $\widehat{PTP'}$ sera plus ou moins grand. De ce fait, la "distance apparente" séparant les deux poteaux lui semblera plus ou moins grande. Le tireur a donc intérêt à se placer de manière à ce que l'angle $\widehat{PTP'}$ soit le plus grand possible.

Soit $\alpha = \widehat{ETP'}$ et $\beta = \widehat{ETP}$ (voir dessin ci-contre).

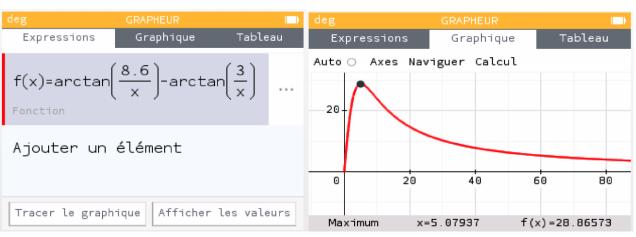
L'angle $\widehat{PTP'}$ est donc égal à $\alpha - \beta$, avec $\alpha = \arctan(\frac{8.6}{x})$ et $\beta = \arctan(\frac{3}{x})$.

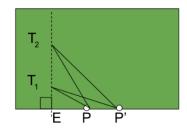
• Trouvons la valeur de x permettant d'obtenir la mesure maximale de $\widehat{PTP'}$:

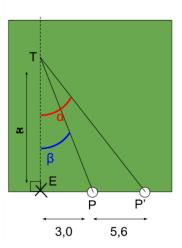
Soit la fonction $f(x) = arctan(\frac{8.6}{x}) - arctan(\frac{3}{x})$.

La fonction f représente la mesure de l'angle $\widehat{PTP'}$ en fonction de x.

f est définie sur $]0; +\infty[$. A l'aide du tracé de la fonction sur une calculatrice graphique, on trouve le maximum : **c'est environ** 5,1 m (au dm près).







Résolution géométrique.

En fait, il existe une seconde méthode "géométrique" pour trouver le point T.

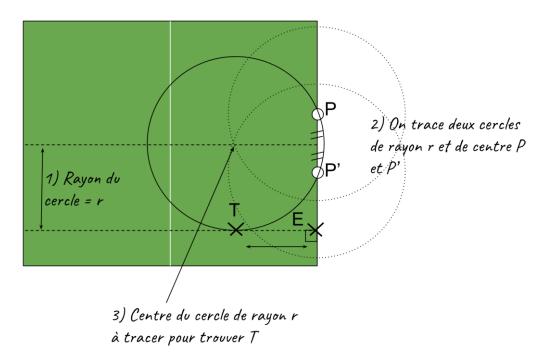
On peut tracer le cercle passant par les deux poteaux, et tangent à la droite passant par le point E (en pointillé).

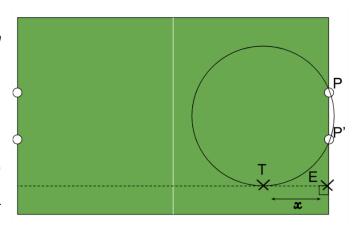
Le point de contact entre le cercle et cette droite est le point T que nous cherchons ! Il est alors possible de faire un dessin à l'échelle pour avoir une approximation de la solution.

Démonstration :

- Tous les angles inscrits interceptant l'arc de cercle PP' ont la même mesure (théorème de l'angle inscrit).
- On va donc chercher à tracer un cercle passant par P et P' avec le plus petit rayon possible pour avoir un angle inscrit de mesure maximale.
- Or, il faut aussi respecter la contrainte d'avoir au moins un point d'intersection entre ce cercle et la droite passant par E (en pointillé).
- Donc il faut tracer le cercle C tangent à cette droite et passant par P et P'.

Méthode pour tracer ce cercle et trouver graphiquement T :





Question 2

Nous avons traité le problème en 2 dimensions. Or, pour que l'essai soit transformé, il faut aussi que la balle passe au-dessus de la barre horizontale. La distance obtenue par l'ingénieur est de 3,7 m, soit une différence de 27% par rapport aux 5,1 m obtenus précédemment.

Cette différence très conséquente montre que le choix du modèle en 2 dimensions plutôt que 3 ne convient pas et est en fait une simplification exagérée du problème posé : la distance de 5,1 m est donc un résultat faux, conséquence d'un choix de modèle inadapté.

Ainsi, le choix de tel ou tel modèle peut amener à des résultats parfois très éloignés de la réalité : ce choix témoigne de la complexité des problèmes rencontrés par les scientifiques dans tous les domaines.

Résolvons maintenant le problème en tenant compte de la hauteur de la barre transversale située à 3 mètres : nous allons traiter le problème avec une contrainte supplémentaire : considérons que le tireur vise entre les deux poteaux à une hauteur de 3,50 m. Dans ce cas quelle serait la distance idéale pour réussir son tir ?

Nous allons exprimer l'angle $\alpha = \widehat{ATB}$ en fonction de la longueur x:

• D'après le théorème de Pythagore, on a :

$$TP^2 = TE^2 + EP^2 = x^2 + 3^2 = x^2 + 9$$

 $TP'^2 = TE^2 + EP'^2 = x^2 + 8,6^2 = x^2 + 73,96$
 $TA^2 = TP^2 + PA^2 = x^2 + 9 + 3,5^2 = x^2 + 21,25$
 $TB^2 = TP'^2 + P'B^2 = x^2 + 73,96 + 3,5^2 = x^2 + 86,21$

• Puis d'après le théorème d'Al-Kashi, on a :

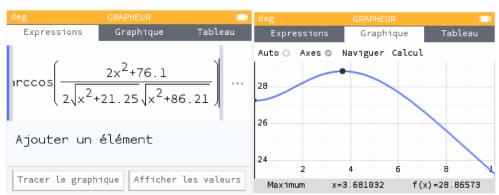
$$AB^{2} = TA^{2} + TB^{2} - 2 \times TA \times TB \times \cos(\alpha)$$

$$\Leftrightarrow$$
 5,6² = x^2 + 21,25 + x^2 + 86,21 - 2 × (x^2 + 21,25) × (x^2 + 86,21) × $cos(\alpha)$

$$\Leftrightarrow cos(\alpha) = \frac{5.6^2 - x^2 - 21.25 - x^2 - 86.21}{-2 \times (x^2 + 21.25) \times (x^2 + 86.21)} = \frac{-2x^2 - 76.1}{-2 \times (x^2 + 21.25) \times (x^2 + 86.21)} = \frac{2x^2 + 76.1}{2 \times (x^2 + 21.25) \times (x^2 + 86.21)}$$

$$\Leftrightarrow \qquad \alpha = \arccos\left(\frac{2x^2 + 76,1}{2 \times (x^2 + 21,25) \times (x^2 + 86,21)}\right)$$

On procède de la même manière que précédemment : on trace la fonction $f(x) = arccos(\frac{2x^2+76,1}{2\times(x^2+21,25)\times(x^2+86,21)})$ su la calculatrice et on trouve le maximum.



Pour conclure, si l'on prend en compte le fait que le ballon doit passer au-dessus de la barre horizontale à 3,5 mètres par exemple, la distance optimale est (en théorie) de **3,7 m** au décimètre près.

